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ABSTRACT 
 

Artificial Intelligence (AI) has transformed the landscape of global security, offering 

advanced capabilities for both counter-terrorism operations and terrorist activities. While 

AI-driven technologies such as facial recognition, predictive analytics, and automated 

surveillance are used by security agencies to detect and prevent threats, terrorist 

organizations have also adapted AI to enhance their operations. The misuse of AI in 

terrorism includes cyber-attacks on critical infrastructure, AI-generated deepfake content for 

propaganda and misinformation, autonomous weaponized drones, and encrypted AI-driven 

communication networks. These emerging threats allow terrorists to operate more 

efficiently, evade detection, and manipulate public perception on a large scale. 

 

The increasing sophistication of AI tools has enabled the automation of 

cyberterrorism, including hacking financial institutions, manipulating social media 

narratives, and launching AI-powered phishing attacks. Terrorists exploit machine learning 

algorithms to analyze vulnerabilities in security systems and plan more precise and 

devastating attacks. Additionally, the rise of AI-powered robotics and autonomous systems 

raises concerns about the future use of self-learning AI weapons in extremist activities. 

These developments pose a significant challenge to governments, intelligence agencies, and 

cybersecurity experts, requiring advanced countermeasures and international collaboration 

to mitigate AI-driven threats. 

 

This project aims to explore the dual impact of AI in terrorism, analyzing both its 

role in facilitating terrorist operations and its potential in counter-terrorism efforts. By 

examining real-world case studies, AI-driven attack strategies, and the latest advancements 

in security technology, this study highlights the need for stricter AI regulations, enhanced 

cybersecurity protocols, and ethical AI deployment. As AI continues to evolve, 

understanding its implications in terrorism is critical for developing proactive strategies to 

ensure global security and prevent the misuse of advanced technologies by extremist groups. 



 

v 

CONTENTS 

                                                                                                               Page No 

CERTIFICATE                                                                                                                 i 

DECLARATION BY THE CANDIDATE                                                                      ii 

ACKNOWLEDGMENT                                                                                                  iii 

ABSTRACT                                                                                                                      iv 

CONTENTS                                                                                                                       v 

LIST OF FIGURES                                                                                                           vi 

LIST OF TABLES    vii 

CHAPTER-1 

     1. INTRODUCTION                                                                                                     1 

     1.1 RESEARCH CONTRIBUTION                                                                          2 

         1.2 PURPOSE                                                                                                              2 

         1.3 SCOPE           4 

         1.4 OVERVIEW  4 

         1.5 PROBLEM STATEMENT                                                                                 5 

CHAPTER-2 

2. LITERATURE SURVEY                                                                                         7 

2.1 MACHINE LEARNING-BASED APPROACHES                                            10 

2.2 DEEP LEARNING-BASED ADVANCEMENTS                                              11 

2.3 HYBRID AND EMERGING TECHNIQUES       12 

2.4 SUMMARY AND FUTURE DIRECTIONS                                                      12 

2.5 CHALLENGES AND LIMITATIONS  13 

            2.5.1 Data Collection And Labeling                                                                    13 

            2.5.2 Generalization Across Environments                                                         13  

            2.5.3 Real-Time Processing And Computational Complexity                            14 

            2.5.4 Ethical And Privacy Concerns                                                                    14 

2.5.5 Multimodel Fusion And Sensor Integration                                             14           

2.6 FUTURE RESEARCH DIRECTIONS                                                                   15 

 



 

vi 

CHAPTER-3 

3. HARDWARE REQUIREMENT                                                              

3.1 EXISTING SYSTEM                                                                                              16 

3.2 PROPOSED SYSTEM                                                                                            17 

3.3 FUNCTIONAL REQUIREMENTS                                                                        18    

3.4 NON-FUNCTIONAL REQUIREMENTS                                                              18 

3.5 FEASIBILITY ANALYSIS                                                                                     18 

3.5.1 Economical Feasibility                                                                                    19   

      3.5.2 Technical Feasibility                                                                                        19 

         3.5.3 Social Feasibility                                                                                             19 

CHAPTER-4 

4. SOFTWARE REQUIREMENTS                                                             20 

4.1 HARDWARE REQUIREMENTS                                                                             21 

    4.2 SOFTWARE REQUIREMENTS                                                                               22 

CHAPTER-5 

5. WORKING AND COMPONENTS                                                           

5.1 ARCHITECTURE                                                                                                 27 

5.2 UNIFIED MODELING LANGUAGE DIAGRAMS                                             30 

            5.2.1 Use case Diagram                                                                                          30  

            5.2.2 Activity Diagram                                                                                           32 

      5.2.3 Sequence Diagram                                                                                        33 

            5.2.4 Class Diagram                                                                                               34 

CHAPTER-6  

6. SYSTEM IMPLEMENTATION                                                                                 35 

   6.1 MODULES                                                                                                                36 

          6.1.1 Load Data                                                                                                         36 

          6.1.2 Data Collection                                                                                                36 

          6.1.3 Data Pre-Processing                                                                                         37 

          6.1.4 Feature Selection.                                                                                             37 

               6.1.5 Feature Extraction.                                                                                           38 

          6.1.6 Deep Learning.                                                                                                 38 

          6.1.7 Model Selection In Deep Learning                                                                  41 



 

vii 

6.2 TECHNOLOGIES                                                                                                       41 

      6.2.1 Python                                                                                                                 42 

      6.2.2 Flask Web Framework                                                                                        43 

      6.2.3 Component And Architecture Of Flask                                                              44 

CHAPTER 7 

7. RESULT ANALYSIS AND REPORT 

    7.1 Python Source Code                                                                                                46 

    7.2 Results                                                                                                                     50 

    7.3 Applications                                                                                                             54 

    7.4 Advantages                                                                                                              55 

    7.5 Disadvantages                                                                                                          56 

CHAPTER 8 

8. CONCLUSION & FUTURE SCOPE                                                                         

    8.1 Conclusion                                                                                                                57 

    8.2 Software Tool Used                                                                                                  58 

    8.3 Future Scope                                                                                                             61 

REFERENCE                                                                                                              63 

    APPENDIX                                                                                                                        65        



 

vii 

                                     LIST OF FIGURES 

FIGURE NO FIGURE NAME    PAGE 

 

5.1               Architecture                                                                              27 

5.2               Use case diagram                                                                      31 

5.3                                 Activity diagram                                                                       32 

5.4                                 Sequence diagram                                                                     33 

5.5                                 Sequence diagram                                                                     34 

7.1                                 Welcome dashboard                                                                  53 

7.2                                 Uploading picture for the detection process                              54 

7.3                                    Image detected – robber with mask                                          54 

7.4                                 Image detected – person with hammer in hand                        55  

7.5                                 Image detected – person threatening civilian                           56 

                                       using a gun                    



 

viii 

                                         LIST OF TABLES 
 

TABLE NO     LIST OF TABLE NAMES PAGE NO 

         2.1                                             
Recognition methods 

 

    8 

 



1 

 

CHAPTER 1 

INTRODUCTION 

 

The widespread incorporation of many applications in modern society has significantly 

transformed many aspects of our lives, with visual systems emerging as essential instruments. 

One important area of study in this field is the detection of suspicious human behaviour using 

video surveillance, which involves classifying the behaviour as either normal or abnormal. The 

increasing frequency of disruptive incidents in public areas globally, ranging from banks to 

airports, highlights the urgent requirement for efficient security measures. As a result, 

surveillance systems, mostly dependent on CCTV cameras, have grown quite common, 

producing large quantities of video data for examination. Nevertheless, the labour-intensive 

nature of manual monitoring makes it unfeasible, thus necessitating the development of 

automated detection systems. 
 

Researchers are using breakthroughs in machine learning, artificial intelligence, and 

deep learning to improve surveillance systems. Their goal is to proactively identify and 

categorize suspicious activity. The objective of this project is to implement deep learning 

models for the purpose of identifying and categorizing six primary activities: Running, 

Punching, Falling, Snatching, Kicking, and Shooting. This will enhance security measures and 

allow for prompt intervention. Deep learning architectures, specifically CNNs, have emerged 

as strong tools for extracting essential capabilities from video data aimed toward facilitating 

efficient detection.  

 

Yekkali et al. suggested the utilization of digital image and video processing techniques 

to monitor item movement. They underscore the importance of training deep temporal models 

for accurate activity identification, as emphasized by Ma et al. Their emphasis lies in 

highlighting the importance of Recurrent Neural Networks (RNNs), mainly long short-term 

memory (LSTM) models, in comprehending the progression of activities and minimizing 

classification errors. Moreover, improvements in video representation learning, in particular in 

long term Temporal Convolutions (LTC), demonstrate promise in improving activity 

recognition. However, there persists a need to enlarge the scope of detectable activities and 

improve overall performance metrics. 
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1.1. RESEARCH CONTRIBUTION  

 

 Introduced an innovative approach for detecting potentially suspicious human behavior by 

leveraging deep learning techniques. The effectiveness of the proposed methodology is 

validated through rigorous testing on unseen data, as well as through the creation of a 

demonstration video on YouTube.  

 

 Developed a new dataset to address the scarcity of publicly available data in this domain. This 

dataset comprises surveillance footage sourced from various environments, encompassing six 

distinct physical activities. 

 

 Conducted a comprehensive comparative analysis to determine the most effective model for 

human activity recognition.  

 

 Implemented Convolutional Neural Networks (CNNs) and advanced deep learning 

architectures, including the Time Distributed CNN model and the Conv3D model. These 

models achieved significantly improved accuracy rates of 90.14% and 88.23%, respectively, 

outperforming existing research methodologies. This study aspires to make a meaningful 

contribution to the ongoing discourse on video surveillance and activity detection. The 

findings have the potential to bolster security measures and enhance public safety in various 

environments. 

 

1.2 PURPOSE  

 

 The primary objective is to proactively identify and classify suspicious activities in real time.  

 

 This project aims to implement advanced deep learning models to distinguish between normal 

and abnormal human activities.  

 

 The technology seeks to enhance security measures by enabling rapid intervention and 

response to potentially dangerous situations. 

 

 By leveraging computer vision and real-time data processing, the system will continuously 

analyze behavioral patterns to improve accuracy and reduce false alarms. 
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 The solution will be designed to adapt and learn from new scenarios, ensuring continuous 

improvement in threat detection and response. 

 

 The system will integrate with existing surveillance infrastructure to provide seamless and 

scalable security enhancements. 

 

 It will utilize multimodal data sources, such as video feeds and sensor inputs, to improve 

detection accuracy. 

 

 The project aims to minimize human intervention by automating anomaly detection and alert 

generation. 

 

 Advanced explainability techniques will be incorporated to provide transparency and trust in 

the model’s decision-making. 

 

 The framework will be optimized for real-time performance, ensuring minimal latency in 

identifying and responding to threats. 

 

Definitions: 

 

 CNN (Convolutional Neural Network): A specialized type of artificial neural network 

designed for processing structured grid data, such as images and videos. 

 

  Conv3D: A neural network model that extends traditional 2D convolutions into three 

dimensions, allowing it to process volumetric data such as video frames and 3D medical 

images.  

 

Abbreviations: 

 

  CNN – Convolutional Neural Networks , A type of deep learning model specifically designed 

for processing structured grid data, such as images. CNNs use convolutional layers to 

automatically detect patterns like edges, textures. 

 

 LSTM – Long Short-Term Memory, A specialized type of Recurrent Neural Network (RNN) 

designed to handle sequential data while overcoming the issue of vanishing gradients. LSTMs 

use memory cells with gates. 
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1.3 SCOPE  

 

The application of deep learning in terrorism activity detection and crime prevention is an 

emerging and highly impactful field within image processing and computer vision. The scope 

of this research includes:  

 

 Public Safety: Enhancing security protocols in public spaces to mitigate risks.  

 

 Crime Prevention: Identifying and preventing criminal activities before escalation.  

 

 Real-time Surveillance: Implementing AI-driven monitoring systems for immediate response.  

 

 Abnormal Activity Detection: Recognizing and classifying unusual behavior patterns. 

 

 Technological Integration: Merging AI, deep learning, and video analytics for more efficient 

security solutions. 

 

1.4 OVERVIEW 

 

 Terrorism Activity Detection and Crime Prevention is an advanced research domain in image 

processing and computer vision, focusing on detecting and categorizing unusual or suspicious 

behaviors through automated video surveillance. 

 

 This technology aims to improve public safety by identifying potential threats, such as theft, 

vandalism, violent altercations, and terrorism-related activities, in real time. 

 

 Suspicious Human Activity Recognition systems involve collecting video data, preprocessing 

it for quality enhancement, and deploying deep learning algorithms to achieve precise activity 

classification. 

 

 Integration with law enforcement and security agencies can further enhance the     

effectiveness of this system, allowing authorities to respond swiftly to potential threats. 

 

 The adoption of automated AI-powered surveillance systems will reduce dependency on 

human operators, thereby increasing efficiency and accuracy while minimizing false alarms. 
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 The system will employ a combination of convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and transformers to extract spatial and temporal features for more 

accurate activity recognition. 

 

 Edge computing and cloud-based solutions will be integrated to ensure real-time processing 

and accessibility across multiple locations. 

 

 A self-learning mechanism using reinforcement learning will be incorporated to adapt to 

evolving threats and improve system performance over time. 

 

 The implementation of multi-camera tracking and sensor fusion will provide a more 

comprehensive surveillance framework, reducing blind spots and enhancing situational 

awareness. 

 

 Ethical considerations, such as privacy protection and bias mitigation, will be addressed to 

ensure responsible AI deployment and compliance with legal frameworks. 

 

 The system's scalability and modularity will allow easy integration with existing security 

infrastructures, making it adaptable for various environments, including airports, public 

transportation hubs, shopping centers, and critical infrastructure sites.This study presents a 

significant advancement in the field of intelligent surveillance by introducing state-of-the-art 

deep learning techniques for identifying and categorizing suspicious. 

 

1.5 PROBLEM STATEMENT 

 

Traditional surveillance systems rely heavily on human monitoring, which is prone to fatigue, 

oversight, and delayed response times. With the increasing complexity of security threats, 

conventional methods struggle to detect and analyze suspicious activities effectively. The 

absence of automated intelligence in these systems limits their ability to recognize evolving 

criminal behaviors, making them inefficient in large-scale, high-risk environments. 

 

Moreover, the vast amount of real-time video data generated from multiple surveillance 

cameras requires advanced processing techniques to extract meaningful insights efficiently. 

Manual analysis of such extensive footage is not only time-consuming but also impractical for 

real-time threat detection. 
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To address these challenges, this research proposes an AI-driven surveillance system 

that leverages deep learning algorithms to enhance suspicious activity detection in real-time. By 

integrating machine learning models, multi-camera tracking, and edge computing, the system 

will optimize surveillance operations, improve detection accuracy, and ensure rapid threat 

assessment. The deployment of self-learning mechanisms and adaptive algorithms will further 

enable the system to continuously improve its performance, reducing bias and increasing 

robustness against new and unpredictable threats. 

 

This study aims to bridge the gap between traditional security frameworks and modern 

AI-powered solutions, ensuring a proactive and intelligent approach to crime prevention and 

public safety. The proposed AI-driven surveillance system will utilize Convolutional Neural 

Networks (CNNs) for object detection and Recurrent Neural Networks (RNNs), such as Long 

Short-Term Memory (LSTM) networks, for behavior analysis. By training on vast datasets of 

real-world surveillance footage, the system can accurately identify suspicious movements, 

unauthorized access, and potential threats in various environments, including public spaces, 

transportation hubs, and commercial facilities. The integration of Generative Adversarial 

Networks (GANs) will further enhance the system’s ability to detect anomalous behaviors by 

generating synthetic scenarios to improve model robustness. Furthermore, the reinforcement 

learning (RL) framework will allow the surveillance system to refine its detection strategies 

dynamically, adapting to evolving security challenges. 

 

To ensure scalability and efficiency, the system will incorporate edge computing and 

cloud-based processing, minimizing latency and enabling real-time decision-making. Edge 

devices, such as IoT cameras and embedded AI processors, will handle preliminary data 

processing, reducing the need for constant cloud communication and improving response times. 

Meanwhile, cloud-based AI models will conduct more advanced analysis, leveraging deep 

learning architectures to provide high-accuracy threat detection across multiple locations.  
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CHAPTER- 02 

LITERATURE SURVEY 

 

 While Human activity recognition has been a topic of considerable study in present literature, 

this section delves into the latest improvements in this domain. Cutting-edge studies in Human 

activity recognition predominantly revolve across the realms of machine learning and deep 

learning methodologies.  

 

In the area of machine learning, Ghazal et al carried out a comparative study specializing 

in Human activity recognition with the use of 2d-skeletal facts. They utilized the Open package 

to extract visual and motion attributes from 2d landmarks of human skeletal joints. The examine 

evaluated five supervised machine learning strategies, consisting of support Vector machine 

(SVM), Naive Bayes (NB), Linear Discriminant (LD), k-nearest (KNNs), and feed-forward 

back propagation neural networks. The primary objective was to identify four awesome activity 

instructions: sitting, standing, walking, and falling, with the k-nearest (KNNs) exhibiting the 

most promising overall performance.  

 

In another study, Zhu et al introduced an online continuous Human action recognition 

(CHAR) approach based on skeletal records captured from Kinect depth sensors. Their approach 

employed a variable-length maximum Entropy Markov model (MEMM) for continuous hobby 

reputation without the need for earlier detection of activity begin and give-up factors. 

Additionally, a singular technique utilized bone information from a depth camera, leveraging 

machine learning to identify human actions appropriately.  

 

In comparison to previous methodologies where every activity is identified by using a 

unique range of clusters distinct from activity instances, et al proposed a unified method based 

on skeletons to analyze the spatial temporal elements of human activity sequences. Their 

approach concerned using Minkowski and cosine distances to quantify the dissimilarity between 

joint data acquired from Microsoft Kinect. The model was trained and assessed using publicly 

available datasets such as MSR each day activity 3D and Microsoft MSR 3D motion.   

Leveraging the extremely Randomized Tree technique. 
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 The effectiveness of CNNs in addressing challenges related to image identification. 

Their study focused on the classification of a diverse array of videos, leveraging a dataset 

comprising 1 million videos categorized into 487 various categories. Exploring numerous 

strategies to comprise local spatio-temporal information into CNNs, they proposed a multi-

resolution architecture aimed at expediting the training process. Through the retraining of the 

top layers of the model using the UCF-one hundred and one action recognition dataset, 

researchers determined enormous enhancements within the model’s generalization 

competencies, resulting in an incredible growth in accuracy from the baseline model’s 43.9% 

to 63.3%. Feichtenhofer et al investigated the current improvements in utilizing CNNs for 

detecting human activities in videos. Their focus changed to strategies that remember both the 

visible appearance and the actions of subjects.  

 

The study delved into leveraging CNN towers to harness spatio-temporal facts, 

highlighting the potential of merging spatial and temporal networks at a convolution layer 

without compromising performance. Introducing a modern CNN architecture for integrating 

video capabilities throughout both space and Time, the researchers established exceptional 

overall performance on broadly recognized evaluation datasets.  

 

Table-2.1 : Recognition methods 

 

 

 



9 

 

Li et al proposed a recognition method using a CNN to enhance the accuracy of indoor human 

activity identification using geographical location data. Their state of-the-art system, 

comprising convolutional layers, fully connected layers, and max pooling, performed high 

quality consequences via appropriately identifying six behaviours with a recognition rate of 

86.7%, demonstrating the practicality of their method. He investigated the software of deep 

studying and switch learning techniques for fall detection by studying information captured 

from security cameras. Utilizing the CNN Alexnet architecture, the classifier becomes tailor-

made to detect falls especially.  

 

Machine learning approaches:  

 

 Ghazal et al. conducted a comparative study on HAR using 2D skeletal data extracted from 

Open pose. Their evaluation of five supervised learning models—SVM, Naïve Bayes, Linear 

Discriminant Analysis, KNN, and feed-forward neural networks— revealed that KNN 

exhibited the highest accuracy for detecting activities like sitting, standing, walking, and 

falling.  

 

 Zhu et al. proposed an online continuous human action recognition (CHAR) system using 

Kinect depth sensors. They leveraged a variable-length maximum entropy Markov model 

(MEMM) to identify human activities without requiring prior knowledge of activity start and 

end points. 

 

Deep learning advancements:  

 

 Karpathy et al. demonstrated the effectiveness of CNNs in video classification by training on 

a dataset of 1 million videos across 487 categories, improving accuracy from 43.9% to 63.3% 

by leveraging spatio-temporal features.  

 

 Li et al. proposed a CNN-based system integrating location data to enhance indoor activity 

recognition, achieving an accuracy of 86.7%.  

 

 Gul et al. employed the YOLO model for real-time patient monitoring, achieving 96.8% 

accuracy in activity recognition.  
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The purpose was to enhance its efficiency by incorporating new heuristics that consider 

the temporal association of frames and the typical period of fall activities. Gul et al. delved into 

the utilization of the You Look Only Once (YOLO) network as the primary CNN model for real 

time affected person surveillance geared toward spotting human actions. Through retraining the 

model across 32 epochs using categorized affected person behaviour snapshots, researchers 

achieved an impressive accuracy of 96.8% in action recognition, underscoring the capacity of 

their technique. 

 

2.1 MACHINE LEARNING-BASED APPROACHES 

 

Machine learning techniques have been widely employed in HAR, with a focus on feature 

extraction from skeletal data, depth sensors, and spatial-temporal attributes. 

Ghazal et al. conducted a comparative study utilizing 2D skeletal data extracted using the 

OpenPose package to capture motion attributes from human skeletal joints. They evaluated five 

supervised learning techniques: Support Vector Machine (SVM), Naive Bayes (NB), Linear 

Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), and feed-forward backpropagation 

neural networks. Their findings indicated that KNN exhibited the highest accuracy in classifying 

four activities: sitting, standing, walking, and falling. 

 

Zhu et al. introduced an online continuous Human Action Recognition (CHAR) model 

using Kinect depth sensors. Their model leveraged a variable-length Maximum Entropy Markov 

Model (MEMM) to identify human activities in a continuous manner, eliminating the need for 

predefined start and end points. Additionally, they incorporated bone information from depth 

cameras to enhance recognition accuracy through machine learning techniques. 

 

Hbali et al. proposed a unified skeleton-based method to analyze the spatial-temporal 

characteristics of human activity sequences. Using Minkowski and cosine distances to quantify 

dissimilarity between skeletal joint data from Microsoft Kinect, they validated their model on 

publicly available datasets such as MSR Daily Activity 3D and MSR 3D Motion. Their model, 

leveraging the Extremely Randomized Tree technique, achieved significant improvements in 

elderly monitoring systems using low-cost depth sensors. 
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2.2 DEEP LEARNING-BASED ADVANCEMENTS 

 

Deep learning has significantly enhanced HAR by leveraging complex neural network 

architectures to improve feature extraction and classification accuracy. Karpathy et al. 

demonstrated the effectiveness of Convolutional Neural Networks (CNNs) in video 

classification using a large-scale dataset comprising 1 million videos across 487 categories. By 

introducing a multi-resolution architecture for incorporating local spatio-temporal information, 

they enhanced the model’s accuracy from 43.9% to 63.3% when fine-tuned on the UCF-101 

action recognition dataset .Feichtenhofer et al. explored CNN-based architectures to detect 

human activities in videos. Their research focused on integrating spatial and temporal features 

in CNN towers, highlighting the importance of merging spatial and motion data at a 

convolutional layer. Their novel architecture showcased exceptional performance on benchmark 

datasets, demonstrating its effectiveness in HAR applications. 

 

Li et al. introduced a CNN-based approach for indoor HAR by integrating geographical 

location data, improving recognition accuracy to 86.7%. Their architecture comprised 

convolutional layers, fully connected layers, and max-pooling operations, showcasing the 

practicality of CNNs in activity recognition. 

 

Gul et al. employed the You Look Only Once (YOLO) model for real-time patient 

monitoring, achieving an accuracy of 96.8% in activity recognition. By retraining the model 

over 32 epochs with labeled patient behavior images, their method demonstrated high precision 

and real-time applicability in healthcare environments. 

 

Ullah et al. developed an advanced anomaly detection framework incorporating pre-

trained CNN models for feature extraction from video frames, followed by Bi-Directional Long 

Short-Term Memory (BD-LSTM) processing. Their method, tested on the UCF-Crime dataset, 

illustrated the effectiveness of deep learning in surveillance and anomaly detection, particularly 

in detecting falls and abnormal activities. This hybrid architecture allows the system to model 

complex patterns of normal and abnormal behavior over time, improving the sensitivity and 

specificity of anomaly detection. The method was rigorously evaluated using the UCF-Crime 

dataset, a large-scale and diverse benchmark for real-world. 
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2.3 HYBRID AND EMERGING TECHNIQUES 

 

Recent research has explored hybrid approaches that combine traditional machine learning and 

deep learning to optimize HAR performance.Chen et al. introduced a fusion framework 

integrating handcrafted features with deep learning representations to enhance HAR accuracy. 

Their approach combined Histogram of Oriented Gradients (HOG) and CNN-based feature 

extraction, significantly improving action classification performance on benchmark datasets. 

 

Wu et al. investigated the role of Graph Convolutional Networks (GCNs) in skeletal-

based HAR, enabling the model to capture complex dependencies between joints over time. 

Their model demonstrated superior performance in recognizing fine-grained human actions, 

particularly in real-time applications. 

 

Huang et al. proposed an attention-based HAR model integrating CNNs with 

Transformer networks to enhance temporal dependencies in activity sequences. Their model 

improved classification accuracy on datasets such as NTU RGB+D, outperforming 

conventional CNN-LSTM models. 

 

2.4 SUMMARY AND FUTURE DIRECTIONS 

 

The advancements in HAR have demonstrated significant improvements in accuracy and real-

time applicability through machine learning, deep learning, and hybrid approaches. While 

traditional machine learning methods offer interpretability and efficiency, deep learning 

techniques provide superior accuracy by leveraging large-scale datasets. Hybrid models and 

emerging architectures, such as GCNs and Transformer networks, further enhance the field by 

optimizing feature extraction and sequence modeling.Future research directions in HAR 

include: 

 

 Enhancing model generalization across diverse environments and datasets. 

 

 Developing lightweight models for real-time and edge computing applications. 

 

 Integrating multimodal data sources, including audio, text, and physiological signals. 

 

 Improving interpretability and explainability of deep learning models for HAR. 
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2.5 CHALLENGES AND LIMITATIONS IN HUMAN ACTIVITY 

RECOGNITION  

 

Despite significant advancements in Human Activity Recognition (HAR) using machine 

learning and deep learning, several challenges and limitations persist, hindering widespread 

adoption and real-world deployment. These challenges stem from data availability, 

computational constraints, real-time processing demands, and model interpretability. 

 

2.5.1 Data Collection And Labeling 

 

One of the primary challenges in HAR is the collection and annotation of high-quality datasets. 

Most state-of-the-art models rely on large-scale datasets for training, but capturing diverse and 

realistic activity samples remains difficult. Issues such as occlusions, variations in lighting 

conditions, and viewpoint differences introduce inconsistencies in data collection. Additionally, 

manually labeling vast amounts of video and sensor data is time-consuming and prone to human 

error, affecting the overall model accuracy. 

 

2.5.2 Generalization Across Environments 

 

Many HAR models perform well on benchmark datasets but struggle to generalize in real-world 

scenarios. Factors such as background clutter, subject variability. Many HAR models perform 

well on benchmark datasets but struggle to generalize in real-world scenarios. Factors such as 

background clutter, subject variability, camera viewpoints, and lighting conditions can 

significantly degrade performance outside controlled settings. Models often overfit to the 

specific environments or subjects present in training data, limiting their robustness. To address 

this, recent research has explored domain adaptation techniques, data augmentation strategies, 

and the use of synthetic datasets to improve generalization. Additionally, few-shot and 

unsupervised learning approaches are gaining traction as they aim to reduce dependence on 

large, labeled datasets while enhancing adaptability to unseen environments. Despite these 

efforts, achieving consistent performance across diverse contexts remains a major challenge. 

Real-world deployments require models that can handle noise, occlusion, and dynamic 

backgrounds with minimal degradation. Incorporating contextual information, such as scene 

semantics and object interactions, has shown promise in improving resilience. 
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2.5.3 Real-Time Processing And Computational Complexity 

 

The real-time nature of HAR applications, particularly in surveillance and healthcare, 

necessitates low-latency inference and efficient computational models. However, deep learning 

models, especially transformers and CNN-LSTM hybrids, require substantial computational 

power, making them less suitable for edge devices and resource-constrained environments. 

Optimizing hardware acceleration, model compression, and quantization techniques is essential 

for improving efficiency without compromising accuracy. 

 

2.5.4 Ethical And Privacy Concerns 

 

Automated surveillance and HAR systems raise significant privacy and ethical concerns. 

Continuous monitoring of individuals without proper consent and regulatory frameworks could 

lead to misuse of data and invasion of privacy. Additionally, biases present in training datasets 

may result in discriminatory outcomes, affecting the fairness and reliability of these systems. 

Ensuring compliance with legal frameworks, implementing privacy-preserving techniques, and 

conducting bias audits are crucial for ethical deployment. 

 

2.5.5 Multimodel Fusion And Sensor Integration 

 

Integrating multiple data modalities, such as RGB video, depth sensors, LiDAR, audio, and 

physiological signals, can improve HAR accuracy by capturing complementary information. 

However, multimodal fusion poses challenges related to synchronization, data alignment, and 

feature extraction. Effectively combining spatial, temporal, and contextual information from 

different sensors requires advanced fusion techniques such as attention mechanisms and graph-

based modeling. To address these challenges, advanced fusion strategies have been developed. 

Attention mechanisms allow models to dynamically weigh the relevance of features from each 

modality, adapting focus based on the context of the observed activity. Graph-based modeling, 

on the other hand, enables structured representation of relationships between multimodal data 

points, facilitating more effective reasoning over both spatial and temporal domains. Other 

techniques, such as cross-modal transformers and neural architecture search for fusion design, 

are also being explored to further optimize performance. 
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2.6 FUTURE RESEARCH DIRECTION 

 

To overcome these challenges, future research in HAR should focus on: 

 

 Developing self-supervised and semi-supervised learning techniques to reduce 

dependence on manually labeled datasets. 

 

 Enhancing model robustness to handle variations in human behavior, environment, and 

sensor noise. 

 

 Optimizing deep learning architectures for real-time, resource-efficient deployment on 

edge devices. 

 

 Ensuring ethical AI development by incorporating privacy-preserving mechanisms and 

fairness-aware training methods. 

 

 Advancing multimodal learning techniques to effectively fuse diverse data sources for 

improved activity recognition. 

 

By addressing these limitations, HAR technology can evolve into a more scalable, efficient, and 

ethically responsible solution for applications in security, healthcare, smart homes, and human-

computer interaction. To address these challenges, advanced fusion strategies have been 

developed. Attention mechanisms allow models to dynamically weigh the relevance of features 

from each modality, adapting focus based on the context of the observed activity. Graph-based 

modeling, on the other hand, enables structured representation of relationships between 

multimodal data points, facilitating more effective reasoning over both spatial and temporal 

domains. Other techniques, such as cross-modal transformers and neural architecture search for 

fusion design, are also being explored to further optimize performance. 
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CHAPTER 3 

SYSTEM ANALYSIS 

 

 3.1 EXISTING SYSTEM  

 

● The existing system for Suspicious Human Activity Recognition (SHAR) utilizes deep 

learning models, particularly Convolutional Neural Networks (CNNs), to detect potentially 

dangerous behaviors in various surveillance contexts.  

 

● These systems extract meaningful features from video data to enhance surveillance accuracy 

and security. However, they face challenges related to accuracy, real-time performance, and 

adaptability to different environments.  

 

● Popular models in the current SHAR framework, such as Time Distributed CNN, Hybrid 

Model, Keras, GRU, and Conv3D, achieve reasonable accuracy, with the 90.14%, 88.23%, 

84.51%, and 83.80%. 

 

 Disadvantages:  

 

● Limited adaptability to diverse surveillance environments, as current models are often trained 

on constrained datasets.  

 

● Real-time detection performance is insufficient, making it challenging to respond promptly 

to potentially dangerous situation. 

 

● Dependence on pre-existing patterns, which may reduce model accuracy in unpredictable or 

novel surveillance scenarios. 

 

● High computational costs and resource requirements, as deep learning-based surveillance 

systems rely on complex neural networks that demand significant processing power, memory, 

and energy consumption. 

 

● Privacy concerns and ethical considerations, as AI-powered surveillance raises issues 

regarding data security, unauthorized surveillance, and potential misuse. 
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3.2 PROPOSED SYSTEM  

 

The proposed system for Suspicious Human Activity Recognition (SHAR) enhances 

surveillance video analysis by integrating deep learning algorithms that is yolo v5 . 

 

● Suspicious human activity recognition using YOLO (You Only Look Once) models, such as 

YOLOv5 and YOLOv8, in deep learning can be a highly effective approach. Both YOLOv5 

and YOLOv8 are state-of-the-art object detection models.  

 

● They can be fine-tuned to detect suspicious human activities in videos or images by 

recognizing specific actions, behaviors, or interactions that might indicate suspicious 

behavior. 

 

Steps that are followed:  

 

● Convert videos into frames. 

 

● Normalize the data to ensure that it can be processed by the YOLO models.  

 

● Resize images to a standard size compatible with the YOLO models. 

 

Advantages:  

 

● Improves adaptability and real-time detection accuracy in diverse surveillance environments.  

 

● Enhances system robustness by integrating sophisticated deep learning models that capture 

complex spatial-temporal patterns.  

 

● Provides a comprehensive approach to detecting suspicious activities, promoting public safety 

through advanced surveillance technology. 

 

● Enhances system robustness by integrating sophisticated deep learning models that capture 

complex spatial-temporal patterns, allowing for accurate detection of anomalies in dynamic 

environments. By leveraging hybrid AI architectures. 
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3.3 FUNCTIONAL REQUIREMENTS 

 

 System functional requirements describe the features or services that the system should 

provide. These are descriptions of what services the system will provide, how it will respond to 

certain inputs, and how it will behave under specific circumstances. User Registration: User 

Register with their Registration details. User Login: User Login their account using password 

Live Inputs: Inputs given by the User requirement. Load Model: Trained or Tested Model will 

be load. Predict Output: Output will be predict based on parameters. 

 

3.4 NON-FUNCTIONAL REQUIREMENTS  

 

Performance: The application should have better accuracy and should provide prediction in 

less time.  

 

Scalability: The system must have the potential to be enlarged to accommodate the growth.  

 

Capability: To store the vast amount of data needed to train the model, the storage capacity 

should be high.  

 

3.5 FEASIBILITY ANALYSIS  

 

This phase includes examining the feasibility of the project and presenting a strategic agreement 

that includes a very simple project plan and some estimates. The feasibility of the proposed 

framework should be studied during the framework review. This is to ensure that society is not 

affected by the proposed framework. A fundamental understanding of the essential needs of the 

framework is vital to the feasibility analysis. The feasibility analysis considers three significant 

elements:  

 

⮚ ECONOMICAL FEASIBILITY  

 

⮚ TECHNICAL FEASIBILITY  

 

⮚ SOCIAL FEASIBILITY  
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3.5.1 Economical Feasibility  

 

The motivation behind this study is to assess the framework's expected monetary effect on the 

organization. The organization has a limited measure of cash to commit to framework 

innovative work. The expenses need to appear to be legit. Since most of the innovations used 

were openly accessible, the created framework was likewise ready to be executed inside the 

distributed financial plan. All that required to be purchased were the customized merchandise. 

 

3.5.2 Technical Feasibility  

 

The motivation behind this study is to assess the framework's specialized necessities, or its 

technical feasibility. Any framework that is made should not put a significant weight on the 

specialized assets that are accessible. High requests will result for the specialized assets that are 

accessible accordingly. Subsequently, the client will confront severe prerequisites. Since 

executing the created framework will just require negligible or invalid changes, it should have 

unassuming prerequisites.  

 

3.5.3 Social Feasibility  

 

Assessing the level of recognition of the framework by customers is one of the objectives of the 

review. This includes showing the customer how to actually work with the framework. The 

customer must recognize the painting as a necessity and not as a danger. The strategies used to 

acclimate and teach the client the structure will decide the degree of recognition by the clients. 

Since you are the latest customer of the framework, your certainty should be expanded so that 

you can offer some supporting analysis, which is enormously valuable. 
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CHAPTER 4 

SYSTEM REQUIREMENTS 

 

Hardware requirements:  

➢ Processor - Pentium –IV  

➢ RAM - 4 GB (min)  

➢ Hard Disk - 20 GB  

➢ Key Board - Standard Windows Keyboard  

➢ Mouse - Two or Three Button Mouse  

➢ Monitor - SVGA  

Software requirements:  

❖ Operating system : Windows 7 Ultimate.  

❖ Coding Language : Python.  

❖ Front-End : Python.  

❖ Back-End : Flask  

❖ Designing : Html, css, javascript.  

❖ Data Base : MySQL (WAMP Server).  
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4.1 HARDWARE REQUIREMENTS  

 

To implement and execute this project, specific hardware components are required. These 

components ensure optimal performance and smooth execution of the application. The 

following sections provide detailed descriptions of each hardware component. 

 

Processor: 

 

The processor is the heart of the system and plays a crucial role in executing the computational 

processes required by the project. For this project. The Pentium IV processor, although an older 

generation, provides sufficient processing power for basic operations. It can handle the 

execution of Python scripts and server-based operations without significant latency. For more 

modern systems, Intel Core i3 or higher processors are recommended for better performance 

and multitasking. 

 

RAM (Random Access Memory) : 

 

 Minimum Requirement: 4 GB  

 

 RAM is essential for storing temporary data and ensuring smooth multitasking. A 4 GB RAM 

capacity is the minimum needed to run the application efficiently. This memory will be 

utilized for loading the operating system, Python runtime, Flask server, and any database 

queries executed during the application's operation.  

 

 For optimal performance, especially with larger datasets, an 8 GB or higher RAM 

configuration is recommended.  

 

Hard disk : 

 

 Minimum Requirement: 20 GB. 

 

 A hard disk with a storage capacity of at least 20 GB is required to store the operating system, 

project files, databases, and other essential resources. Modern hard drives or SSDs (Solid State 

Drives) with higher capacities (e.g., 128 GB or 256 GB) are encouraged to facilitate faster 

data access and system responsiveness. 

 



22 

 

Keyboard: 

 

 Type: Standard Windows Keyboard 14. 

 

 The keyboard serves as the primary input device for writing code, testing the application, and 

navigating the system. A standard Windows keyboard provides all the necessary functionality 

required for development and debugging.  

 

Mouse : 

 

 Type: Two or Three Button Mouse. 

 

 A mouse with two or three buttons allows efficient navigation within the development 

environment. It simplifies tasks such as selecting text, dragging elements, and navigating 

through design interfaces.  

 

Monitor : 

 

 Type: SVGA (Super Video Graphics Array)  

 

 The monitor is an essential output device that provides a visual interface to interact with the 

system. An SVGA monitor with a resolution of 800x600 pixels or higher is sufficient for 

viewing the project interface, designing layouts, and debugging applications. Modern 

monitors with Full HD (1920x1080 pixels) or higher resolutions offer enhanced clarity and 

workspace.  

 

4.2 SOFTWARE REQUIREMENTS  

 

The development and execution of this project rely on a combination of software components. 

Each component has a specific role in the project's success. Below is an elaboration of each 

requirement. The front-end interface facilitates user interaction and visualization, providing 

intuitive access to system functionalities. The back-end handles data processing, model 

inference, and communication between various modules. Additionally, frameworks such as 

TensorFlow are employed for building and training deep learning models, while tools like 

OpenCV assist in real-time video capture and preprocessing. 
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Operating system : 

 

 Requirement: Windows 7 Ultimate  

 

 The operating system serves as the backbone for the project’s execution. Windows 7 Ultimate 

provides a stable environment with support for various development tools and frameworks. It 

includes essential drivers and software compatibility to support Python, Flask, and MySQL  

 

 For enhanced security and support, it is recommended to use a more recent operating system, 

such as Windows 10 or 11.  

 

Coding language : 

 

 Language Used: Python  

 

 Python is a versatile and powerful programming language widely used for web development, 

data analysis, and scripting. It is chosen for this project due to its simplicity, extensive 

libraries, and active community support.  

 

 Key libraries used in this project include Flask (for backend development), MySQL connector 

(for database interaction), and libraries for designing APIs and managing requests.  

 

Front-end : 

 

 Technology Used: Python  

 

 The front-end aspect of this project uses Python for generating dynamic content and managing 

user interaction. Python-based frameworks like Flask simplify the creation of user interfaces. 

  

 Additionally, Python supports template rendering through libraries like Jinja2, which integrate 

well with HTML and CSS for creating interactive user interfaces.  

 

 For the back-end, Python provides robust support for machine learning and deep learning 

through libraries such as TensorFlow, Keras, and PyTorch. These frameworks are used to 

develop, train, and deploy the anomaly detection models that power the core functionality of 

the system. 
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Back-end : 

 

 Technology Used: Flask  

 

 Flask is a lightweight and modular web framework in Python. It is used to create the server  

logic for the application. Flask provides a robust environment for routing, request handling, 

and managing application logic.  

 

 The Flask environment simplifies the development process with features like: o Support for 

RESTful APIs o Integration with databases such as MySQL o Scalability for handling multiple 

user requests simultaneously. 

 

 The Flask environment simplifies the development process with features like Support for 

RESTful APIs, Integration with databases such as MySQL,  for handling multiple user 

requests simultaneously. 

 

Designing: 

 

  Technologies Used: HTML, CSS, JavaScript o HTML: HyperText Markup Language 

(HTML) is used to structure the web pages and define the content layout. It forms the 

foundation of the user interface. o CSS: Cascading Style Sheets (CSS) is employed for styling 

the HTML content, ensuring a visually appealing design with colors, fonts, and layouts. o 

JavaScript: JavaScript adds interactivity to the application. It enables dynamic content 

updates, form validations, and smooth transitions on the web pages.  

 

 These technologies collectively provide a user-friendly interface that enhances the overall user 

experience.  

 

Database : 

 

 Technology Used: MySQL (WAMP Server)  

 

 MySQL is a relational database management system used to store, retrieve, and manage data 

for the project. WAMP (Windows, Apache, MySQL, and PHP) Server is a software stack that 

simplifies the installation and configuration of MySQL on Windows systems. 
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Key features of WAMP server : 

 

1.Ease of stallation: WAMP Server provides an all-in-one installation package that includes 

Apache (web server), MySQL (database), and PHP (scripting language). This reduces the 

complexity of setting up a development environment.  

 

2.Integrated environment: it creates a unified environment where developers can 

simultaneously work on the web server, database, and php scripts.  

 

3.user-friendly interface: WAMP Server offers a simple GUI to manage Apache services, 

MySQL databases, and PHP configurations.  

 

4.Customization options: Developers can customize Apache and MySQL settings using the 

configuration files provided in WAMP.  

 

5.Testing and debugging: It enables developers to test and debug their web applications locally 

before deployment.  

 

Benefits of using WAMP server : 

 

 Simplifies development by providing a pre-configured environment.  

 

 Reduces time spent on installing and configuring individual components.  

 

 Supports various PHP versions, allowing compatibility with different projects.  

 

 Offers a secure testing environment for applications before deploying to live servers. 

 

Limitations and considerations : 

 

 WAMP Server is designed for Windows OS and might not be directly compatible with Linux 

or macOS. However, alternative stacks like LAMP (Linux, Apache, MySQL, PHP) can be used 

for those operating systems.  

 

 It is primarily a development environment and is not recommended for production-level 

deployments due to potential security vulnerabilities. 
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 Limited contextual understanding, as AI-driven surveillance systems primarily focus on 

pattern recognition rather than true situational awareness. While they can detect anomalies, 

they often lack the ability to interpret intent or differentiate between benign and malicious 

activities. 

 

 False positives and false negatives, which can undermine the reliability of AI-based 

surveillance. High false-positive rates may lead to unnecessary alerts, wasting security 

resources, while false negatives can allow actual threats to go undetected. 

 

 Dependence on high-quality labeled data, as AI models require large, well-annotated datasets 

for training. However, obtaining diverse and accurately labeled real-world surveillance 

footage can be expensive, time-consuming, and subject to privacy restrictions. 

 

 Scalability challenges, particularly when deploying AI-driven surveillance systems across 

large networks or multiple locations. Real-time processing of high-resolution video streams 

demands significant computational resources and infrastructure, which may not be feasible in 

all settings. 

 

 Privacy and ethical concerns, as continuous monitoring and data collection raise questions 

about individuals' rights and the potential for misuse. Balancing security with ethical 

considerations requires implementing strict data governance policies and ensuring compliance 

with legal frameworks such as GDPR. 

 

 Difficulty in adapting to dynamic environments, where changes in lighting, weather, or camera 

angles can significantly affect the performance of AI models. Without adaptive mechanisms, 

models trained in one environment may fail to generalize effectively in another, reducing their 

long-term reliability. 
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CHAPTER 5 

SOFTWARE DESIGN 

 

5.1 ARCHITECTURE 

 

The diagram presents an end-to-end anomaly detection framework using deep learning for video 

surveillance. It starts with video data collection and proceeds through data preparation, 

annotation, and preprocessing. The dataset is then split into training and testing sets, followed 

by feature extraction using CNNs. These features are input into a model implementation phase 

to detect anomalies. The system’s predictions are finally evaluated using metrics like accuracy, 

precision, recall, F1-score, and a confusion matrix. 

 

 

Fig-5.1: Architecture 
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This flowchart illustrates the end-to-end pipeline of a video-based anomaly detection system 

using deep learning. Here’s a breakdown of each component and its role in the process: 

 

1. Video data sources (s1, s2) 

 

 These are input video feeds or datasets, possibly from different environments or 

surveillance systems. 

 

 S1 and S2 could represent different camera sources or datasets such as UCF-Crime or 

custom surveillance footage. 

 

2. Data preparation & annotation 

 

 Data Preparation: Involves extracting frames from videos, resizing, and organizing 

them. 

 

 Data Annotation: Labeling the frames or video segments with tags like “normal” or 

“anomalous.” 

 

 Final Dataset: A clean, structured dataset ready for preprocessing and model training. 

 

3. Image data preprocessing 

 

 Frames undergo normalization, noise reduction, resizing, or augmentation. 

 

 Preprocessing ensures consistency and improves the learning capacity of the model. 

 

4. Train/test split 

 

 The dataset is divided into training and testing subsets. 

 

 This is critical for evaluating the model’s generalization performance. 

 

5. CNN-based features 

 

 Convolutional Neural Networks (CNNs) are used to extract deep spatial features from 

each frame. 

 

 These features capture essential visual patterns for identifying anomalies. 
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6. Models implementation 

 

 This stage uses the extracted CNN features as input to sequence models like LSTM, Bi-

LSTM, or hybrid networks. 

 

 The model learns to detect temporal patterns and classify events as normal or anomalous. 

 

7. Final prediction 

 

 Based on the trained model, the system outputs a prediction for each video segment or 

frame. 

 

 This indicates whether an anomaly is detected. 

 

8. Performance assessment 

 

The model’s output is evaluated using standard metrics: 

 

o Accuracy: Overall correctness of predictions. 

 

o Precision: How many predicted anomalies were actually anomalous. 

 

o Recall: How many true anomalies were correctly detected. 

 

o F1-score: Harmonic mean of precision and recall. 

 

o Confusion Matrix: Shows the counts of true/false positives and negatives. 

 

This flowchart presents a modular, interpretable pipeline for video-based anomaly detection 

using deep learning. It emphasizes the importance of preprocessing, feature extraction, model 

training, and robust evaluation for deploying AI in real-world surveillance. 
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5.2 UNIFIED MODELING LANGUAGE DIAGRAMS  

 

Using the blue print, the UML method allows for a detailed description of the system 

architecture. When it comes to demonstrating huge, complex frameworks, UML offers a variety 

of design best practices that have proven to be powerful. Make object-oriented programming 

and product improvement process heavily dependent on UML. UML primarily communicates 

the programming project plan through graphical documentation. 19 Project groups can convey 

all the more successfully, research elective plans, and approve the product's engineering 

configuration by utilizing the UML. UML offers a variety of design best practices. 

 

5.2.1 Use Case Diagram  

 

As per the Unified Modeling Language (UML), a use case chart is a particular kind of friendly 

outline made and described by use case research. Its objective is to give a graphical synopsis of 

the utility given by a system as far as liveliness, use cases (portrayal of its objectives), and any 

interdependencies between these use cases.  

 

The fundamental reason for a utilization case chart is to show which specialists get 

which capacities from the structure. It is possible to identify the occupations of actors within 

the framework. The Use Case Diagram provides a graphical representation of the system’s 

functionalities, showcasing different actors (e.g., security personnel, AI monitoring system) and 

their interactions with the system. It helps identify system requirements and user roles. Using 

the blueprint provided by the Unified Modeling Language (UML), a detailed description of the 

system architecture can be achieved. UML offers a variety of proven design best practices, 

particularly useful for visualizing and documenting large, complex frameworks.  

 

UML plays a crucial role in object-oriented programming and the software development 

process. It primarily serves as a graphical communication tool for the programming project plan. 

By leveraging UML diagrams, project teams can communicate more effectively, explore 

alternative designs, and validate the system's architectural configuration. This facilitates a 

shared understanding of the system, reduces ambiguity, and enhances collaboration throughout 

the development lifecycle. 
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Additionally, UML provides a standardized approach to visualizing system components, 

making it easier to identify relationships and dependencies between objects. It aids in 

documenting system requirements, ensuring that all stakeholders have a clear understanding of 

functional and non-functional specifications. UML diagrams also support code generation and 

reverse engineering, streamlining the transition from design to implementation. By 

incorporating UML in software development, teams can mitigate risks, improve maintainability, 

and enhance the scalability of their applications. 

 

 

 

Fig-5.2: Use case diagram  
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5.2.2 Activity Diagram  

Activity diagrams are graphical work processes that help decision, iteration, and concurrency 

in consecutive exercises and activities. Activity graphs in the Unified Modeling Language can 

be used to make sense of subsequent functional and business workflows of parts of the 

framework. A stock chart shows the overall flow of control. They illustrate how various actions 

are interconnected, how data flows between them, and where decisions or parallel processes 

occur. By visualizing dynamic behavior, activity diagrams assist developers and stakeholders in 

understanding system logic, improving communication, and identifying potential process 

optimizations. 

 

 

 

Fig-5.3: Activity diagram 
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5.2.3 Sequence Diagram  

 

In the Unified Modeling Language (UML), a succession outline is a sort of cooperative 

arrangement that depicts the associations and gatherings wherein cycles work together. This is 

the development of the message grouping graph. Event chart, occasion situation and timing 

outline are various names of arrangement chart. They are particularly useful for understanding 

the dynamic behavior of a system and how objects communicate with each other. It would show 

the sequence of messages exchanged between these objects, such as "Detect Unusual Activity," 

"Retrieve Relevant Data," "Generate Alert," and Dispatch Security Team. Sequence diagrams 

help in visualizing the precise order of operations and interactions over time, making it easier 

to identify potential delays, dependencies, or inefficiencies in communication. They are 

especially useful during system design and debugging phases, as they clarify how components 

collaborate to fulfill specific functions. Moreover, by modeling real-time scenarios, sequence 

diagrams assist developers in ensuring that system behavior aligns with functional requirements 

and user expectations. 

 

 

 
 

Fig-5.4: Sequence diagram 
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5.2.4 Class Diagram  

 

A class diagram, as used in programming, is a type of static design model in the Unified 

Modeling Language (UML) that describes classes, functions, operations (or techniques), and 

connections between classes and frameworks. Shows the type of information. It defines the 

attributes and methods of each class, as well as the relationships such as inheritance, association, 

aggregation, and composition between them. Class diagrams are essential in object-oriented 

design, as they help in visualizing the system's structure before actual coding begins. They also 

support code generation and reverse engineering in many development tools. By providing a 

clear blueprint of the system architecture, class diagrams enhance maintainability, scalability, 

and collaboration among development teams. 

 

 

 
 

Fig-5.5: Sequence diagram 
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CHAPTER 6 

SYSTEM IMPLEMENTATION 

 

 The process initiates with the identification and collection of Video Data Sources (denoted as 

S1 and S2), which are repositories containing raw video inputs. These sources may vary in 

format, quality, and content. To ensure the usability of this data, a rigorous Data Preparation 

process is employed. This phase focuses on cleaning, filtering, and organizing the raw video 

data to remove inconsistencies, noise, or redundant information. Once prepared, the data 

undergoes Data Annotation, a critical step where domain experts or automated tools label and 

classify specific sections of the video data. Annotation ensures that the dataset is contextualized 

and ready for machine learning tasks. This curated and annotated dataset, referred to as the Final 

Dataset, serves as the foundational input for subsequent model training and evaluation. Proper 

preparation and annotation ensure data reliability, relevance, and representativeness for 

achieving robust predictions.  

 

Following data preparation, the annotated dataset enters the Image Data Preprocessing 

stage. This step focuses on extracting frames or image samples from the video data and 

performing transformations to prepare them for analysis. Key preprocessing tasks include 

resizing frames to a uniform resolution, normalizing pixel values to maintain consistency, and 

applying enhancement techniques to improve the quality of images. This ensures that the data 

is standardized and free of distortions. Once preprocessed, the dataset is split into Train/Test 

Splits, creating subsets for training and evaluating the models.  

 

An essential part of this methodology involves CNN-Based Feature Extraction, where 

Convolutional Neural Networks (CNNs) are utilized to learn and extract deep, meaningful 

features from the preprocessed images. These features capture intricate patterns and visual 

structures critical to solving the prediction task, making them a robust input for model 

implementation. 

 

The pipeline culminates in the Models Implementation stage, where the extracted CNN-

based features serve as inputs for training sophisticated machine learning models. 
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 The predictions generated by these models are consolidated into a comprehensive Final 

Prediction output. To ensure the reliability and effectiveness of the model, a detailed 

Performance Assessment is conducted.This evaluation involves calculating metrics such as 

Accuracy, Precision, Recall, F1-Score, and generating a Confusion Matrix. These metrics 

provide a quantitative understanding of the model's strengths and weaknesses, enabling targeted 

refinements if necessary. This systematic approach, from data acquisition to performance 

assessment, ensures the development of a highly effective and accurate predictive system. 

 

 6.1 MODULES 

 

 Load Data  

 

Data collection  

 

Data pre-processing  

 

Feature Selection  

 

Feature Extraction  

 

Deep Learning  

 

6.1.1 Load Data 

 

With Pandas, you can import data straight into a dataframe from a variety of data sources. These 

can be a variety of widely used databases, including MySQL, PostgreSQL, and Google 

BigQuery, as well as static files like CSV, TSV, fixed width files, Microsoft Excel, JSON, SAS, 

and SPSS files. Data can also be directly scraped from websites and entered into Pandas 

dataframes. 

 

6.1.2 Data Collection 

 

Gathering data from various sources both online and offline by scraping, capturing, and loading 

it is known as data collection. The most challenging aspect of a machine learning project can be 

creating or gathering large amounts of data, especially when working at scale. In order to use 

data analysis to identify recurrent patterns, data collection. 



37 

 

6.1.3 Data Pre-Processing 

 

Data preprocessing is the most commonly used method to prepare raw data for machine learning 

models. This is the first important step in developing a machine learning model. It's not always 

easy to find clear and well-organized data when starting a machine learning project. Therefore, 

data cleaning and formatting are essential tasks for any project that involves data. This is where 

data preprocessing comes into play. True information frequently contains errors, missing 

qualities, and might be in a configuration unsatisfactory for direct utilization of machine 

learning models. Cleaning and getting ready information for machine learning models are 

significant stages in the information preprocessing process, assisting with working on the 

precision and proficiency of machine learning models. 

 

It involves below steps:  

 

○ Getting the dataset  

 

○ Importing libraries  

 

○ Importing datasets 

 

○ Finding Missing Data  

 

○ Encoding Categorical Data  

 

○ Splitting dataset into training and test set  

 

○ Feature scaling 

 

6.1.4 Feature Selection 

 

The objective of feature selection strategies in deep learning is to find the ideal arrangement of 

highlights that work on the advancement of exact models for the qualities being studied. There 

are various sorts of deep learning highlight determination procedures that can be utilized, 

including supervised techniques, which are utilized on marked information to distinguish 

important elements that will further develop performance.  
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6.1.5 Feature Extraction 

 

The dimensionality decrease process, what separates and lessens an underlying arrangement of 

crude information into additional sensible gatherings, include feature extraction. It will in this 

manner be easier to process when you need to. These enormous informational collections' 

overflow of factors is by a long shot their most huge component. Handling these factors takes a 

ton of computer power. Accordingly, feature extraction productively lessens how much 

information by picking and joining factors into elements to assist with removing the best 

component from those huge informational indexes. These qualities are easy to deal with while 

precisely and innovatively portraying the genuine informational collection. They serve as a 

general description of the image's color statistics. 

 

6.1.6 Deep Learning  

 

Deep learning is a part of machine learning that has practical experience in demonstrating and 

taking care of muddled issues with artificial neural networks. It draws inspiration from the 

composition and operations of the human brain, particularly from the networked layers of 

neurons. Because deep learning can automatically learn hierarchical representations from data, 

it has become very popular and successful in many different fields.  

Here are some essential details regarding deep learning: 

 

1. Neural networks: Neural networks, which are made up of layers of connected nodes or 

artificial neurons, are the foundation of deep learning. The term "deep" in deep learning 

describes these networks' depth, which indicates that they have several layers. 

 

2. Deep neural networks (DNNs): Training deep neural networks, which can have several 

layers (deep networks) or just a few (shallow networks), is a common step in deep learning. 

The network can extract complex features and representations from the input data thanks to 

the depth.  

 

3. Representation learning: Automatic feature extraction and representation learning are two 

areas in which deep learning shines. During training, the model learns to extract pertinent 

features from the data rather than manually engineering features.  
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4. Back propagation training: Back propagation is a technique used in the training of deep 

neural networks. The process entails making iterative adjustments to the weights of 

connections among neurons in order to reduce the discrepancy between the target and the 

predicted output. Usually, stochastic gradient descent and other optimization algorithms are 

used for this.  

 

6. Architectures: Different deep learning structures are open, including Transformers for 

regular language handling, Recurrent Neural Networks (RNNs) for consecutive 

information, and Convolutional Neural Networks (CNNs) for picture related tasks. These 

designs are made to deal with specific tasks and data types.  

 

Two well-liked deep learning architectures, ResNet (Residual Network) and DenseNet (Densely 

Connected Convolutional Network), were created expressly to solve training difficulties for 

extremely deep neural networks. Let's examine each in brief: 

 

Algorithms used  

 

The YOLO (You Only Look Once) family of object detection algorithms is renowned for its 

real-time performance and accuracy in detecting objects in images and videos. Each subsequent 

version introduces enhancements to architecture, feature extraction, and training strategies, 

improving upon its predecessors. Below is a detailed explanation of the working mechanisms 

for YOLOv5, YOLOv8, YOLOv9, and YOLOv11.  

 

YOLO V5 Algorithm  

 

1. Backbone: Model Backbone is mostly used to extract key features from an input image. 

CSP(Cross Stage Partial Networks) are used as a backbone in YOLO v5 to extract rich in 

useful characteristics from an input image.  

 

2. Neck: The Model Neck is mostly used to create feature pyramids. Feature pyramids aid 

models in generalizing successfully when it comes to object scaling. It aids in the 

identification of the same object in various sizes and scales.  
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3. Head: The model Head is mostly responsible for the final detection step. It uses anchor 

boxes to construct final output vectors with class probabilities, objectness scores, and 

bounding boxes. The head of the YOLO v5 model is the same as in the previous YOLO V3 

and V4 editions. 

 

Advantages & disadvantages of yolo v5  

 

 It is about 88% smaller than YOLOv4 (27 MB vs 244 MB). 

 

 It is about 180% faster than YOLOv4 (140 FPS vs 50 FPS). 

 

 It is roughly as accurate as YOLOv4 on the same task (0.895 MAP vs 0.892 MAP). 

 

 But the main problem is that for YOLOv5 there is no official paper was released like other 

YOLO versions. Also, YOLO v5 is still under development and we receive frequent updates 

from ultralytics, developers may update some settings in the future.  

 

YOLOv8: Improvements and mechanism  

 

YOLOv8 builds on YOLOv7 by improving computational efficiency, accuracy, and 

generalization. It introduces architectural refinements and focuses on optimal use of 

computational resources. 

 

1. Key features:  

 

○ Decoupled Head: YOLOv8 separates classification and regression tasks in its head, improving 

the accuracy of object localization and label prediction.  

 

○ Dynamic Anchor Free Mechanism: YOLOv8 uses a dynamic anchor-free mechanism, which 

eliminates reliance on predefined anchor boxes. This reduces computational complexity and 

improves detection for objects of varying scales.  

 

○ Scaled-Down Neural Blocks: Efficient convolutional modules are used to reduce latency and 

improve throughput.  
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2. Workflow: 

 

○The input image is divided into an SxS grid, and each cell is responsible for detecting objects 

within its region. 

 

 ○ Feature extraction happens via a deep CNN backbone, where the extracted features are passed 

to the head for detection and classification.  

 

3. Performance enhancements:  

 

○ Optimized for real-time applications by reducing model size without sacrificing accuracy. 

 

○ Improved generalization on diverse datasets, making it suitable for various domains, including 

animal detection. 

 

 6.1.7 Model selection in deep learning 

 

The process of choosing the optimal algorithm and model architecture for a given task or data 

set is called model selection in deep learning. It involves comparing and evaluating multiple 

models to determine which model best fits the data and provides the best results. When choosing 

a model, considerations such as model complexity, data processing capabilities, and ability to 

generalize to new examples are taken into account. Indicators like accuracy and mean squared 

error are used along with techniques like grid search and cross-validation to assess and compare 

models. The goal of model selection is to identify a model that strikes a balance between 

performance and complexity in order to generate solid predictions and strong generalization 

capabilities.  

 

6.2 TECHNOLOGIES  

 

6.2.1 PYTHON  

 

6.2.1 Flask  
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6.2.1 Python  

 

Python is a popular programming language known for its ease of interpretation and numerous 

options for creating Graphical User Interfaces (GUIs). Among the various GUI technologies 

available, Flask is the most commonly used and serves as the standard interface for Python's 

TK GUI toolkit.  

 

The least demanding and quickest method for utilizing Flask results to make GUI 

applications is with Python. Utilizing Flask to make a GUI is a simple undertaking. Python is a 

generally utilized, flexible, and normal programming language. 

 

It is phenomenal as a first language since it is succinct and easy to comprehend and 

furthermore great to use in any developer's heap since it tends to be used from improvement of 

the web to programming. It's fundamental, simple to-utilize sentence structure, making it the 

best language to initially learn PC programming. Most implementations of Python (including C 

and Python), include a read- eval-print (REPL) loop that enables the user to act as a command-

line interpreter that results in sequence and instantaneous intake of instructions. Other shells 

like as IDLE and Python provide extra features such as auto-completion, session retention and 

highlighting of syntax.  

 

Interactive mode programming 

  

This prompt appears when the interpreter is invoked without a script file passed as an argument. 

− $ python  

Python 2.4.3 (#1, Nov 11 2010, 13:34:43)  

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2  

Type "help", "copyright", "credits" or "license" for more information  

Type the following text at the Python prompt and press the Enter –  

>>> print "Hello, Python!" If you are running new version of Python, then you would need to 

use print statement with parenthesis as in print ("Hello, Python!").  

− Hello. 
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Script mode programming 

 

 The script is executed when the interpreter is invoked with a script parameter, and it runs 

continuously until it is completed. The interpreter stops working when the script is done. 

Let's write a script that runs a basic Python program. Python files have the.py extension. Enter 

the source code in a test.py file: 

 

Live Demo print \"Hello, Python! \ " Let's say you have the Python interpreter configured in the 

PATH variable. Now try running this program as follows:  

$python test.py this produces the following output: Hello, Python! Let’s try another way to run 

a Python script. Here is the modified test.py file – Live Demo  

#! /usr/bin/python print "Hello, Python!"  

Let's say you have a Python interpreter available in the /usr/bin directory. Now try running this 

program as follows:  

$ chmod +x test.py # This is to make file executable  

$./test.py  

This produces the following result – 

 Hello, Python!  

 

6.2.2 Flask Web Framework 

 

 Flask is a web application framework written in Python. Armin Ronacher, who leads an 

international group of Python enthusiasts named Pocco, develops it. Flask is based on Werkzeug 

WSGI toolkit and Jinja2 template engine. Both are Pocco projects. Unlike the Django 

framework, Flask is very Pythonic. It’s easy to get started with Flask, because it doesn’t have a 

huge learning curve.  

 

On top of that it’s very explicit, which increases readability. It is classified as a 

microframework because it does not require particular tools or libraries. It has no database 

abstraction layer, form validation, or any other components where pre- existing third-party 

libraries provide common functions. However, Flask supports extensions that can add 

application features as if they were implemented in Flask itself. Extensions exist for object-

relational mappers, form validation, upload handling. 
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6.2.3 Components And Architecture Of Flask 

 

Flask follows a simple yet powerful architecture that provides developers with the flexibility to 

build applications efficiently. Since Flask is a microframework, it does not enforce a strict 

project structure but offers essential components that can be extended as needed. 

 

Core Components of Flask 

 

1. Werkzeug 

 

o Flask is built on Werkzeug, a lightweight WSGI (Web Server Gateway Interface) toolkit that 

enables communication between web applications and servers. 

 

o It provides features like request handling, routing, and middleware support. 

 

2. Jinja2 template engine 

 

o Jinja2 is a powerful templating engine that allows developers to embed Python-like 

expressions within HTML. 

 

o It supports template inheritance, filters, macros, and loops, making it ideal for dynamic web 

pages. 

 

3. Routing system 

 

o Flask uses a simple yet effective routing mechanism to map URLs to Python functions. 

 

o Routes are defined using the @app.route() decorator. 

 

4. Request and response handling 

 

o Flask provides built-in support for handling HTTP requests and responses, including GET, 

POST, PUT, DELETE methods. 

 

o Developers can easily access form data, JSON requests, and URL parameters. 
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5. Flask blueprints (Modular applications) 

 

o Blueprints allow Flask applications to be structured into reusable modules, making large 

applications easier to maintain. 

 

6. Flask extensions 

 

o Since Flask is minimalistic, developers often extend its functionality using third-party 

extensions. 

 

o Common Flask extensions include: 

 

 Flask-SQLAlchemy – Database ORM 

 

 Flask-WTF – Form handling and validation 

 

 Flask-Login – User authentication 

 

 Flask-Mail – Email support 

 

Flask application architecture 

 

Flask applications can be structured in multiple ways, depending on the project's size 

and complexity. A common Flask application structure looks like this: 

 

 app/ – The main application package 

 

 templates/ – HTML templates for rendering views 

 

 static/ – CSS, JavaScript, and image files 

 

 config.py – Configuration settings (e.g., database, secret keys) 

 

 run.py – Entry point for running the application 
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CHAPTER 7 

RESULT ANALYSIS AND REPORT 

 

7.1 PYTHON SOURCE CODE 

 

import argparse 

import io 

import os 

from PIL import Image 

import cv2 

import numpy as np 

from torchvision.models import detection 

import sqlite3 

import torch 

from torchvision import models 

from flask import Flask, render_template, request, redirect, Response 

import pathlib 

temp = pathlib.PosixPath 

pathlib.PosixPath = pathlib.WindowsPath 

app = Flask(__name__) 

model = torch.hub.load("ultralytics/yolov5", "custom", path = "best.pt", force_reload=True) 

model.eval() 

model.conf = 0.5   

model.iou = 0.45   
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from io import BytesIO 

def gen(): 

    """ 

    The function takes in a video stream from the webcam, runs it through the model, and returns 

the 

    output of the model as a video stream 

    """ 

    cap=cv2.VideoCapture('Training VIdeos/4th video.mp4') 

    while(cap.isOpened()): 

        success, frame = cap.read() 

        if success == True: 

            ret,buffer=cv2.imencode('.jpg',frame) 

            frame=buffer.tobytes() 

            img = Image.open(io.BytesIO(frame)) 

            results = model(img, size=415) 

            results.print()   

            img = np.squeeze(results.render())  

            img_BGR = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)  

        else: 

            break 

        frame = cv2.imencode('.jpg', img_BGR)[1].tobytes() 

        yield(b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') 

      @app.route('/video') 
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      def video(): 

    """ 

    It returns a response object that contains a generator function that yields a sequence of images 

    :return: A response object with the gen() function as the body. 

    """ 

    return Response(gen(), 

                        mimetype='multipart/x-mixed-replace; boundary=frame') 

@app.route("/predict", methods=["GET", "POST"]) 

def predict(): 

    """ 

    The function takes in an image, runs it through the model, and then saves the output image 

to a 

    static folder 

    :return: The image is being returned. 

    """ 

    if request.method == "POST": 

        if "file" not in request.files: 

            return redirect(request.url) 

        file = request.files["file"] 

        if not file: 

            return 

        img_bytes = file.read() 

        img = Image.open(io.BytesIO(img_bytes)) 
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        results = model(img, size=415) 

        results.render()   

        for img in results.render(): 

            img_base64 = Image.fromarray(img) 

            img_base64.save("static/image0.jpg", format="JPEG") 

        return redirect("static/image0.jpg") 

    return render_template("index.html") 

@app.route('/') 

@app.route("/index") 

def index(): 

    return render_template("index.html") 

if __name__ == "__main__": 

    app.run(port=5000)   
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7.2 RESULTS 

 

The dashboard homepage features a clean, minimalist design with a dark blue background and 

centered white text for readability. It welcomes users with the headline “Welcome to 

Dashboard!” followed by a clear subtitle describing the purpose: detecting terrorist activities 

using AI. A “Get In Touch” button encourages user engagement or further interaction. A small 

“Home” link is placed at the top right for easy navigation. 

 

 

Fig7.1. Welcome dashboard 

 

This interface is part of an AI-based system for detecting terrorist activities through image 

analysis. At the top, the page displays the project title in bold: "Detecting Terrorist Activities 

Around Us Using Artificial Intelligence." Below that, users are prompted to "Upload any image" 

using a file chooser. Once an image is selected, a green "Upload" button allows the user to 

submit the file for processing. The page features a minimalist, white-themed design with footer 

credits indicating it’s built using Free HTML5 templates. Social media icons are provided for 

sharing or connecting via Twitter, Facebook, LinkedIn, and Dribbble.. The central section 

allows users to upload any image file from their local system using the “Choose File” button. 

Once selected, the filename appears beside the button, and users can proceed by clicking the 

green “upload” button, which triggers the backend AI engine to analyze the uploaded image for 

potential threats or suspicious activity. 
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Fig7.2. Uploading picture for detection process 

 

The image shows a real-time detection scenario where a masked individual is attempting to 

snatch a chain from a woman in public. The AI system has successfully identified the suspect, 

labeling him as a "robber--with--mask" with a confidence score of 0.51. The suspect’s face is 

partially covered with a scarf, emphasizing the threat and suspicious behavior. The bounding 

box drawn by the AI highlights the region of concern, indicating the exact person involved in 

the act.  

 

 

Fig7.3 Image detected – robber with mask 
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The image captures a suspicious activity involving two individuals on a motorcycle, both 

wearing black helmets and dark clothing. The person seated at the back is holding a red hammer, 

suggesting a potential threat or premeditated criminal intent. The hammer is encircled, 

indicating it was detected or highlighted for further analysis. This situation appears to depict an 

attempted assault, robbery, or vandalism. The scenario is an ideal use case for AI-powered 

surveillance systems to detect and prevent such high-risk activities in real time. 

 

 
 

Fig7.4 Image detected – person with hammer in hand 

 

This image shows a robbery taking place inside a retail store or convenience shop. A person 

wearing a black hoodie and a white face mask is detected by the AI model as a "robber with 

mask", with a confidence level of 0.68. The individual is reaching toward the cash counter, 

possibly to take money or valuables. The model has also detected a weapon in the person’s hand 

or nearby, marked with a confidence score of 0.59, indicating a potential threat. The surrounding 

environment includes store shelves stocked with items and a cash register, clearly placing the 

event in a commercial setting. This scene demonstrates how AI-powered object detection (like 

YOLOv5) can identify criminal behavior in real-time, supporting proactive threat response. 

 

 This image highlights a critical real-world scenario where AI technology plays a vital 

role in enhancing public safety. The individual, whose identity is concealed with a mask and 

hoodie, is engaged in an armed robbery at a retail establishment.  
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The use of YOLOv5 object detection model has successfully identified key indicators of 

suspicious activity — labeling the individual as a "robber with mask" and recognizing a weapon 

present at the scene. These detections are made based on visual cues, such as clothing 

concealment and weapon possession, which are common traits in criminal offenses like store 

hold-ups. 

 

 

FIG7.5 Image detected – person threatening civilian with using gun 
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7.3 APPLICATIONS 

 

1. Smart surveillance for public safety 

 

 AI-driven CCTV cameras detect suspicious behaviors in crowded places like airports, 

train stations, stadiums, and government buildings. 

 

 Identifies unattended baggage, concealed weapons, and aggressive behavior to alert 

security personnel. 

 

2. Automated threat object detection 

 

 AI models recognize weapons such as guns, knives, or explosives in real time. 

 

 Can be deployed at entry points of high-security areas like embassies, military bases, 

and government institutions. 

 

3. Facial recognition for suspect identification 

 

 Identifies individuals on watchlists using biometric data and facial recognition 

systems. 

 

 Can be integrated with law enforcement databases for real-time suspect tracking. 

 

4. Social media & dark web monitoring 

 

 AI scans social media platforms, forums, and the dark web for extremist propaganda, 

radicalization content, or suspicious communication patterns. 

 

 Helps in detecting recruitment efforts by terror organizations and predicting potential 

threats. 

 

5. Drone-based surveillance for remote areas 

 

 AI-powered drones monitor large or inaccessible areas, such as borders, forests, or 

deserts, to track terrorist movements. 

 

 Drones can be equipped with infrared cameras for nighttime operations. 
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7.4 ADVANTAGES 

 

 Real-time detection – YOLOv5’s fast processing speed enables real-time detection of 

suspicious activities, making it highly effective for surveillance applications. 

 

 High accuracy – With advanced deep learning algorithms, YOLOv5 achieves superior 

accuracy in recognizing human actions and distinguishing between normal and suspicious 

behaviors. 

 

 Lightweight & efficient – Compared to other deep learning models, YOLOv5 has a 

lightweight architecture, allowing efficient deployment on various hardware, including edge 

devices like security cameras and drones. 

 

 Multi-object detection – It can simultaneously detect multiple people and activities, making 

it highly scalable for crowded areas such as airports, malls, and public transport hubs. 

 

 Low latency – Unlike traditional object detection frameworks, YOLOv5 processes entire 

frames in a single pass, reducing computational load and improving real-time response. 

 

 Adaptability & continuous learning – The model supports custom training, allowing 

security agencies to train YOLOv5 on specific datasets for better recognition of threats in 

different environments. 

 

 Cost-effective implementation – Its compatibility with edge computing reduces reliance 

on expensive cloud infrastructure, making deployment more affordable and accessible for 

security operations. 

 

 Integration with aI-powered security systems – YOLOv5 can be easily integrated with 

facial recognition, thermal imaging, and anomaly detection systems, enhancing overall 

security surveillance capabilities. 

 

 Reduced false alarms – Advanced deep learning optimizations help minimize false 

positives, ensuring that security personnel focus only on genuine threats. 
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7.5 DISADVANTAGES 

 

 Requires large, labeled datasets – Accurate recognition of suspicious activities demands 

substantial and scenario-specific training data, which can be time-consuming and costly 

to acquire. 

 

 Limited contextual understanding – YOLOv5 detects actions but cannot interpret the 

intent or context behind them, potentially misclassifying normal behaviors as 

suspicious. 

 

 Performance degradation in challenging conditions – Low light, occlusions, crowded 

environments, and unusual camera angles can negatively affect detection accuracy. 

 

 Hardware dependency – Despite being lightweight, optimal performance often 

requires GPUs or edge devices, which may not be feasible in low-budget deployments. 

 

 Ethical and privacy concerns – Continuous monitoring and activity recognition can 

infringe on personal privacy, especially when combined with identity-tracking 

technologies. 

 

 Potential bias in detection – If trained on biased datasets, YOLOv5 may 

disproportionately flag certain groups or behaviors, leading to unfair or inaccurate 

outcomes. 

 

 False negatives – While false positives are reduced, subtle or rare suspicious activities 

may go undetected, posing a security risk. 

 

 Complexity in maintenance – Continuous retraining and model updates are necessary 

to adapt to evolving threats, requiring technical expertise and additional resources. 

 

 Lack of multi-modal integration – Out of the box, YOLOv5 does not incorporate 

audio, thermal, or other sensor data, which may limit detection precision in complex 

environments. 
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CHAPTER 8 

CONCLUSION & FUTURE SCOPE 

8.1 CONCLUSION 

 

Utilizing the YOLOv5 algorithm for Suspicious Human Activity Recognition offers a 

groundbreaking approach to real-time surveillance and threat detection, significantly enhancing 

security systems’ effectiveness. As modern security threats become more sophisticated, the 

need for high-speed, accurate, and intelligent monitoring systems has never been more crucial. 

Traditional surveillance methods often struggle with delays, false positives, and inefficiencies 

in recognizing complex human behaviors in dynamic environments. The advent of deep 

learning-based object detection models has revolutionized this domain, with YOLOv5 

emerging as a premier solution due to its balance of speed, accuracy, and computational 

efficiency. 

 

YOLOv5's lightweight yet powerful architecture ensures rapid processing of live video 

streams, enabling precise detection of suspicious activities in real time with minimal latency. 

Unlike conventional object detection frameworks, YOLOv5 employs an end-to-end detection 

mechanism that processes entire video frames in a single pass, making it exceptionally fast. Its 

ability to detect multiple objects and human actions simultaneously allows for seamless 

scalability across various security applications, including public surveillance, airport security, 

border control, and high-risk restricted areas. A key advantage of YOLOv5 is its support for 

continuous learning, which enhances its adaptability to evolving behavioral patterns and 

emerging threats. This capability enables security systems to remain proactive rather than 

reactive, improving their ability to detect previously unseen suspicious activities. Furthermore, 

YOLOv5's compatibility with edge computing devices ensures cost-effective deployment, 

reducing reliance . 

 

In conclusion, YOLOv5's combination of speed, scalability, and precision makes it a 

transformative tool for advancing Suspicious Human Activity Recognition (SHAR). Future 

enhancements may involve multi-modal sensor fusion, integrating audio analysis and thermal 

imaging to further refine detection accuracy. As AI-driven security systems continue to evolve, 

YOLOv5 sets a new benchmark for real-time, intelligent threat detection. 
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8.2 SOFTWARE TOOL USED  

 

Python is a high-level, interpreted programming language known for its simplicity, readability, 

and versatility. Created by Guido van Rossum and first released in 1991, Python has since 

become one of the most popular programming languages in the world. It follows a clear and 

concise syntax, making it easy for beginners to learn while offering powerful features that 

enable professionals to develop complex applications. Python supports multiple programming 

paradigms, including procedural, object-oriented, and functional programming, making it 

highly flexible for various applications. Due to its dynamic typing and automatic memory 

management, Python simplifies software development by reducing the need for extensive 

boilerplate code. 

 

One of Python’s key strengths is its extensive standard library, which provides built-in 

modules for handling tasks such as file manipulation, network communication, and data 

processing. In addition to the standard library, Python has a vast ecosystem of third-party 

libraries and frameworks that extend its capabilities. Libraries such as NumPy, Pandas, and 

Matplotlib make Python a preferred choice for data science and analytics, while TensorFlow 

and PyTorch are widely used for machine learning and artificial intelligence. Web development 

frameworks like Django and Flask enable developers to build scalable web applications 

efficiently, and automation tools like Selenium and Scrapy make Python ideal for web scraping 

and testing. Its adaptability has also led to its use in cybersecurity, embedded systems, scientific 

computing, and finance. 

 

Python's simplicity and versatility have contributed to its widespread adoption across industries, 

including software development, finance, healthcare, and research. Its ease of integration with 

other languages, such as C, C++, and Java, allows developers to incorporate Python into existing 

projects seamlessly. Python’s interactive shell and scripting capabilities make it an excellent 

tool for rapid prototyping and experimentation, further increasing its appeal. The language also 

promotes code reusability and maintainability through features like modules and packages, 

which allow developers to organize their code efficiently. Due to its dynamic typing and 

automatic memory management, Python simplifies software development by reducing the need 

for extensive boilerplate cod 
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Python’s cross-platform compatibility means that code written in Python can run on 

various operating systems, including Windows, macOS, and Linux, without modification. Its 

strong community support ensures continuous updates, bug fixes, and the development of new 

libraries. The language has a rich ecosystem of resources, including official documentation, 

forums, and tutorials, making it easy for both beginners and experts to enhance their skills. 

Additionally, Python's support for concurrent programming and asynchronous execution allows 

it to handle large-scale applications and real-time processing efficiently.Python has become a 

fundamental language in modern software development, education, and research. Its simplicity, 

vast library support, and active community make it a top choice for a wide range of applications, 

from small scripts to large-scale enterprise solutions. As technology continues to evolve, 

Python’s role in artificial intelligence, machine learning, cloud computing, and automation is 

expected to grow, ensuring its relevance in the future of programming. 

 

Python is a general-purpose programming language that has gained immense popularity 

due to its readability, ease of learning, and ability to cater to various programming needs. Unlike 

many other languages, Python emphasizes code readability with its use of indentation, reducing 

the need for curly braces or semicolons, which often complicate code structure in other 

languages. This feature makes Python an excellent language for both novice programmers and 

seasoned professionals. The design philosophy of Python revolves around the concept of 

"There’s only one way to do it," which promotes simplicity and consistency in code. This feature 

encourages developers to adopt clean, well-organized codebases that are easy to maintain and 

extend.Python’s versatility is also demonstrated in its extensive support for different types of 

applications. It is highly favored in web development, scientific research, automation, data 

analysis, machine learning, artificial intelligence, and scripting tasks. Python’s role in data 

science, in particular, has exploded due to powerful libraries such as NumPy, Pandas, and 

Matplotlib, which provide efficient ways to manipulate, analyze, and visualize large datasets. 

For machine learning and AI development, frameworks like TensorFlow, PyTorch, and Keras 

have revolutionized the industry, making Python a dominant language in the field. Furthermore, 

Python is extensively used in web scraping with libraries like Beautiful Soup and Scrapy, 

allowing developers to extract information from websites easily. It is highly favored in web 

development, scientific research, automation, data analysis, machine learning, artificial 

intelligence, and scripting tasks.  
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One of Python's most notable characteristics is its active and vibrant community. With a 

large pool of contributors, Python continues to evolve, with regular updates, bug fixes, and the 

addition of new features. Python’s ecosystem of third-party packages, available through the 

Python Package Index, continues to expand, offering solutions to almost any problem 

imaginable. The PIP package manager makes it easy to install and manage libraries, ensuring 

developers have access to the most up-to-date tools and frameworks. Additionally, Python’s 

open-source nature encourages collaboration, making it a go-to language for developers 

working on both personal projects and large-scale enterprise systems. 

 

Python’s flexibility is another major draw. It is a language that can easily integrate with 

other languages such as C, C++, and Java, allowing developers to leverage Python for scripting 

while using other languages for performance-critical sections of their applications. Python’s 

ability to run across different platforms, including Windows, macOS, Linux, and even 

embedded systems, further adds to its accessibility and usability. With support for cloud 

computing platforms like AWS, Azure, and Google Cloud, Python is a popular choice for 

building scalable and flexible cloud-based applications. 

 

Python’s application extends beyond traditional software development. For example, in 

the realm of Internet of Things (IoT), Python can be used to program low-power 

microcontrollers like the Raspberry Pi, making it accessible for hobbyists and engineers alike. 

Python’s versatility also extends to game development, where engines such as Pygame allow 

for the creation of simple 2D games, and for network programming, where libraries like Twisted 

and Socket help in building robust and scalable network applications. 
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8.3 FUTURE SCOPE 

 

1. Integration with multi-model ai for enhanced threat detection 

 

 Current Limitation: YOLOv5 mainly relies on visual cues for suspicious activity detection, 

which may miss audio-based threats. 

 

 Future Solution: Multi-modal AI will combine video, audio, and sensor-based data for better 

threat recognition. 

 

2. Federated learning for privacy-preserving ai surveillance 

 

 Current Limitation: Traditional AI models require centralized training using large datasets, 

leading to privacy concerns in sensitive environments. 

 

 Future Solution: Federated learning will allow YOLOv5 models to learn from distributed 

edge devices without sharing sensitive data, ensuring privacy compliance. 

 

3. AI-powered autonomous drones for aerial surveillance 

 

 Current Limitation: Fixed-position security cameras have limited field of view and cannot 

cover vast areas effectively. 

 

 Future Solution: YOLOv5 will be integrated into autonomous AI-powered drones for real-

time aerial surveillance. 

 

4. Real-time predictive analytics for crime prevention 

 

 Current Limitation: Traditional surveillance systems react after an incident occurs rather 

than predicting threats in advance. 

 

 Future Solution: YOLOv5 will be combined with predictive AI models that analyze 

historical crime data to forecast potential security threats before they occur. 

 

  Autonomous drones equipped with AI-powered cameras will be deployed to monitor high-

risk zones from aerial perspectives. These drones can provide live video feeds to the central 

system, allowing rapid detection of suspicious activities in large crowds. 
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5. Expansion into smart cities for intelligent surveillance 

 

 Current Limitation: Many cities still rely on manual monitoring of CCTV footage, leading 

to delayed responses. 

 

 Future Solution: AI-driven security systems will be fully integrated into smart city 

infrastructures, enabling automated real-time monitoring and alerting. 

 

6. Improved action recognition with 3d convolutional networks 

 

 Current Limitation: Current YOLO models primarily detect static objects but may struggle 

with complex human actions such as fights, running, or sneaky behavior. 

 

 Future Solution: Integration with 3D Convolutional Neural Networks (Conv3D) will 

enhance action recognition capabilities. 

 

7. Ai-enabled wearable security for law enforcement & defense 

 

 Current Limitation: Traditional body cameras only record footage without real-time AI-

based threat detection. 

 

 Future Solution: YOLOv5 will be integrated into wearable AI-powered security devices for 

law enforcement, military personnel, and private security teams. 

 

8. Integration with iot for smart security systems 

 

 Current Limitation: Standalone security systems lack automated responses and smart 

connectivity. 

 

 Future Solution: YOLOv5 will be integrated with IoT-based security frameworks, allowing 

automated security actions based on real-time AI analysis. 

 

9. AI-driven behavioral analysis for Insider threat Detection 

 

 Current Limitation: Current security systems focus on external threats but often miss insider 

threats (employees with malicious intent). 
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APPENDIX 

 

This appendix provides a detailed overview of the technical components, tools, and 

methodologies used in the development of an AI-based system for detecting terrorism-related 

activities. The project aims to build a smart surveillance solution capable of identifying violent 

or suspicious human behavior that may indicate potential terrorist threats in public 

environments. Given the increasing occurrence of hostile incidents in areas such as airports, 

malls, train stations, and public gatherings, this system focuses on automating the monitoring 

process to enhance safety and enable rapid response. 

 

The core of the system is based on deep learning models that can process and interpret 

surveillance video in real-time. Specifically, Convolutional Neural Networks (CNNs) are 

employed for spatial feature extraction from individual video frames, while Long Short-Term 

Memory (LSTM) networks are used to understand the temporal relationships between frames. 

This combination enables the system to recognize complex activities like running, falling, 

punching, snatching, shooting, and kicking—actions that may indicate panic, aggression, or 

ongoing violent events. To support the development of the models, a custom dataset was created 

using video clips sourced from various public scenarios. These clips were preprocessed through 

techniques such as frame extraction, resizing, normalization, and augmentation to enhance 

model accuracy and robustness. The dataset was then divided into training and testing sets to 

validate model performance. Python was the primary programming language used, with 

libraries such as TensorFlow, Keras, OpenCV, NumPy, and Matplotlib playing key roles in 

model training, video processing, and result visualization. The models were trained in GPU-

supported environments using platforms like Google colab to handle computational demands. 

 

This appendix supports the reproducibility of the research and provides a foundation for 

future enhancements, such as integrating multi-modal sensors, using reinforcement learning for 

adaptive behavior, and addressing ethical concerns like privacy and bias in automated 

surveillance. The project presents a critical step forward in applying AI for public safety and 

counter-terrorism efforts. 

 

 


